# ROC and AUC in R!!!

library(pROC) # install with install.packages("pROC") library(randomForest) # install with install.packages("randomForest") ####################################### ## ## Generate weight and obesity datasets. ## ####################################### set.seed(420) # this will make my results match yours num.samples <- 100 ## genereate 100 values from a normal distribution with ## mean 172 and standard deviation 29, then sort them weight <- sort(rnorm(n=num.samples, mean=172, sd=29)) ## Now we will decide if a sample is obese or not. ## NOTE: This method for classifying a sample as obese or not ## was made up just for this example. ## rank(weight) returns 1 for the lightest, 2 for the second lightest, ... ## ... and it returns 100 for the heaviest. ## So what we do is generate a random number between 0 and 1. Then we see if ## that number is less than rank/100. So, for the lightest sample, rank = 1. ## This sample will be classified "obese" if we get a random number less than ## 1/100. For the second lightest sample, rank = 2, we get another random ## number between 0 and 1 and classify this sample "obese" if that random ## number is < 2/100. We repeat that process for all 100 samples obese <- ifelse(test=(runif(n=num.samples) < (rank(weight)/num.samples)), yes=1, no=0) obese ## print out the contents of "obese" to show us which samples were ## classified "obese" with 1, and which samples were classified ## "not obese" with 0. ## plot the data plot(x=weight, y=obese) ## fit a logistic regression to the data... glm.fit=glm(obese ~ weight, family=binomial) lines(weight, glm.fit$fitted.values) ####################################### ## ## draw ROC and AUC using pROC ## ####################################### ## NOTE: By default, the graphs come out looking terrible ## The problem is that ROC graphs should be square, since the x and y axes ## both go from 0 to 1. However, the window in which I draw them isn't square ## so extra whitespace is added to pad the sides. roc(obese, glm.fit$fitted.values, plot=TRUE) ## Now let's configure R so that it prints the graph as a square. ## par(pty = "s") ## pty sets the aspect ratio of the plot region. Two options: ## "s" - creates a square plotting region ## "m" - (the default) creates a maximal plotting region roc(obese, glm.fit$fitted.values, plot=TRUE) ## NOTE: By default, roc() uses specificity on the x-axis and the values range ## from 1 to 0. This makes the graph look like what we would expect, but the ## x-axis itself might induce a headache. To use 1-specificity (i.e. the ## False Positive Rate) on the x-axis, set "legacy.axes" to TRUE. roc(obese, glm.fit$fitted.values, plot=TRUE, legacy.axes=TRUE) ## If you want to rename the x and y axes... roc(obese, glm.fit$fitted.values, plot=TRUE, legacy.axes=TRUE, percent=TRUE, xlab="False Positive Percentage", ylab="True Postive Percentage") ## We can also change the color of the ROC line, and make it wider... roc(obese, glm.fit$fitted.values, plot=TRUE, legacy.axes=TRUE, percent=TRUE, xlab="False Positive Percentage", ylab="True Postive Percentage", col="#377eb8", lwd=4) ## If we want to find out the optimal threshold we can store the ## data used to make the ROC graph in a variable... roc.info <- roc(obese, glm.fit$fitted.values, legacy.axes=TRUE) str(roc.info) ## and then extract just the information that we want from that variable. roc.df <- data.frame( tpp=roc.info$sensitivities*100, ## tpp = true positive percentage fpp=(1 - roc.info$specificities)*100, ## fpp = false positive precentage thresholds=roc.info$thresholds) head(roc.df) ## head() will show us the values for the upper right-hand corner ## of the ROC graph, when the threshold is so low ## (negative infinity) that every single sample is called "obese". ## Thus TPP = 100% and FPP = 100% tail(roc.df) ## tail() will show us the values for the lower left-hand corner ## of the ROC graph, when the threshold is so high (infinity) ## that every single sample is called "not obese". ## Thus, TPP = 0% and FPP = 0% ## now let's look at the thresholds between TPP 60% and 80% roc.df[roc.df$tpp > 60 & roc.df$tpp < 80,] ## We can calculate the area under the curve... roc(obese, glm.fit$fitted.values, plot=TRUE, legacy.axes=TRUE, percent=TRUE, xlab="False Positive Percentage", ylab="True Postive Percentage", col="#377eb8", lwd=4, print.auc=TRUE) ## ...and the partial area under the curve. roc(obese, glm.fit$fitted.values, plot=TRUE, legacy.axes=TRUE, percent=TRUE, xlab="False Positive Percentage", ylab="True Postive Percentage", col="#377eb8", lwd=4, print.auc=TRUE, print.auc.x=45, partial.auc=c(100, 90), auc.polygon = TRUE, auc.polygon.col = "#377eb822") ####################################### ## ## Now let's fit the data with a random forest... ## ####################################### rf.model <- randomForest(factor(obese) ~ weight) ## ROC for random forest roc(obese, rf.model$votes[,1], plot=TRUE, legacy.axes=TRUE, percent=TRUE, xlab="False Positive Percentage", ylab="True Postive Percentage", col="#4daf4a", lwd=4, print.auc=TRUE) ####################################### ## ## Now layer logistic regression and random forest ROC graphs.. ## ####################################### roc(obese, glm.fit$fitted.values, plot=TRUE, legacy.axes=TRUE, percent=TRUE, xlab="False Positive Percentage", ylab="True Postive Percentage", col="#377eb8", lwd=4, print.auc=TRUE) plot.roc(obese, rf.model$votes[,1], percent=TRUE, col="#4daf4a", lwd=4, print.auc=TRUE, add=TRUE, print.auc.y=40) legend("bottomright", legend=c("Logisitic Regression", "Random Forest"), col=c("#377eb8", "#4daf4a"), lwd=4) ####################################### ## ## Now that we're done with our ROC fun, let's reset the par() variables. ## There are two ways to do it... ## ####################################### par(pty = "m")