StatQuest: Multiple Regression in R

Here’s the link to the sample code on the StatQuest GitHub.


			

4 thoughts on “StatQuest: Multiple Regression in R

  1. #Python Code
    “””
    Created on Mon May 20 18:42:39 2019

    @author: Guru

    https://seaborn.pydata.org/tutorial/regression.html
    “””

    ## Here’s the data

    import pandas as pd
    from plotly.offline import download_plotlyjs, init_notebook_mode, plot
    from plotly.graph_objs import *
    from sklearn.linear_model import LinearRegression
    import statsmodels.api as sm
    import seaborn as sns
    from scipy import stats
    import matplotlib.pyplot as plt
    ## Here’s the data from the example:
    mouse = pd.DataFrame({“weight”:[0.9, 1.8, 2.4, 3.5, 3.9, 4.4, 5.1, 5.6, 6.3],
    “sizes”:[1.4, 2.6, 1.0, 3.7, 5.5, 3.2, 3.0, 4.9, 6.3],
    “tail” :[0.7, 1.3, 0.7, 2.0, 3.6, 3.0, 2.9, 3.9, 4.0]})
    print(mouse)

    #######################################################
    ##
    ## Let’s start by reviewing simple regression by
    ## modeling mouse size with mouse weight.
    ##
    #######################################################

    ## STEP 1: Draw a graph of the data to make sure the relationship make sense
    #Plotting Scatter Matrix using pandas

    trace0 = Scatter(
    x=mouse.weight,
    y=mouse.sizes,
    mode=’markers’)

    ## STEP 2: Do the regression
    X2 = sm.add_constant(mouse.iloc[:,0:1].values)
    est = sm.OLS(mouse.iloc[:,1].values, X2)
    est2 = est.fit()

    ## STEP 3: Look at the R^2, F-value and p-value
    print(est2.rsquared,est2.pvalues)

    # Plot using plotly
    # add the regression line to our x/y scatter plot
    trace2 = Scatter(
    x = mouse.weight,
    y = est2.predict(X2)
    )

    data = [trace0,trace2]

    layout = Layout(
    showlegend=True,
    height=600,
    width=600,
    )

    fig = dict( data=data, layout=layout )
    #plot(fig)

    sns.lmplot(x=”weight”, y=”sizes”, data=mouse);

    # Plot using Seaborn
    #Plotting Scatter Matrix using seaborn

    “””sns.set()
    sns.pairplot(mouse)
    #Plotting Scatter Matrix using pandas
    pd.plotting.scatter_matrix(mouse);
    plt.show()”””

    # cumulative distribution function
    from scipy.stats import f, norm
    def plot_f_distrubiton(fvalue,dfn,dfd):
    # Set figure
    plt.figure(figsize=(8, 6))

    # Set degrees of freedom

    rejection_reg = f.ppf(q=.95, dfn=dfn, dfd=dfd)
    mean, var, skew, kurt = f.stats(dfn, dfd, moments=’mvsk’)

    x = np.linspace(f.ppf(0.01, dfn, dfd),
    f.ppf(0.99, dfn, dfd), 100)

    # Plot values
    plt.plot(x, f.pdf(x, dfn, dfd), alpha=0.6,
    label=’ X ~ F({}, {})’.format(dfn, dfd))
    plt.axvline(x=fvalue)
    plt.vlines(rejection_reg, 0.0, 1.0,
    linestyles=”dashdot”, label=”Crit. Value: {:.2f}”.format(rejection_reg))
    plt.legend()
    plt.ylim(0.0, 1.0)
    plt.xlim(0.0, 20.0,5)
    plt.title(‘F-Distribution dfn:{}, dfd:{}’.format(dfn, dfd))

    plot_f_distrubiton(est2.fvalue,1,7);

    from sklearn.metrics import r2_score
    print(“r2_score”,r2_score(mouse.sizes,est2.predict(X2)))
    print(“fvalue”,est2.fvalue)
    print(“f_pvalue”,est2.f_pvalue)

    print(stats.f.cdf(est2.fvalue,1,7))
    print(1-stats.f.cdf(est2.fvalue,1,7))
    ss_mean = sum((mouse.sizes – np.mean(mouse.sizes))**2)
    ss_simple = sum((mouse.sizes – est2.fittedvalues)**2)
    f_simple = ((ss_mean – ss_simple) / (2 – 1))/ (ss_simple/ (len(mouse) – 2))
    print(est2.summary())

    #######################################################
    ##
    ## Now let’s do multiple regression by adding an extra term, tail length
    ##
    #######################################################

    ## STEP 1: Draw a graph of the data to make sure the relationship make sense
    ## This graph is more complex because it shows the relationships between all
    ## of the columns in “mouse.data”.
    pd.plotting.scatter_matrix(mouse);
    plt.show()

    sns.set()
    sns.pairplot(mouse)

    #plot(mouse.data)

    ## STEP 2: Do the regression

    X2 = mouse[[‘weight’, ‘tail’]]
    y = mouse[‘sizes’]
    X2 = sm.add_constant(X2)
    est = sm.OLS(y, X2).fit()

    print(“r2_score,pvalues”,est.rsquared,est.pvalues)

    print(“r2_score”,r2_score(mouse.sizes,est.predict(X2)))
    print(“fvalue”,est.fvalue)
    print(“f_pvalue”,est.f_pvalue)

    plot_f_distrubiton(est.fvalue,2,6);

    print(stats.f.cdf(est.fvalue,2,6))
    print(“f_pvalue”,1-stats.f.cdf(est.fvalue,2,6))

    ## lastly, let’s compare this p-value to the one from the
    ## original regression

    #ss_mean = sum((mouse.sizes – np.mean(mouse.sizes))**2)
    ss_multiple = sum((mouse.sizes – est.fittedvalues)**2)

    f_multiple = ((ss_mean – ss_multiple) / (len(est.params) – 1)) / (ss_multiple / (len(mouse) – len(est.params)))
    print(est.summary())

    ## we can also verify that the F-value is what we think it is

    #######################################################
    ##
    ## Now, let’s see if “tail” makes a significant controbution by
    ## comparing the “simple” fit (which does not include the tail data)
    ## to the “multiple” fit (which has the extra term for the tail data)
    ##
    #######################################################

    f_simple_v_multiple = ((ss_simple – ss_multiple) / (len(est.params)-2)) / (ss_multiple / (len(mouse) – len(est.params)))

    print(f_simple_v_multiple)
    print(1-stats.f.cdf(f_simple_v_multiple,1,6))

    ## Notice that this value is the same as the p-value next to the term for
    ## for “tail” in the summary of multiple regression:
    print(est.summary())

    ## Thus, the summary already calculated this F-value and p-value for us.
    ## this line tells us that including the “tail” term makes a statistically
    ## significant difference. The magnitude can be determined by looking
    ## at the change in R^2 between the simple and multiple regressions.

    • Those are just possible values for the ‘f’ statistic. In theory, x should go from 0 to positive infinity, but the line gets really close to 0 for values greater than 20.

Leave a Reply

Your email address will not be published. Required fields are marked *